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a Aerodynamics, Pratt & Whitney, 400 Main Street, East Hartford, CT 06108, United States
b Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los, Descubrimientos s/n, E-41092 Sevilla, Spain

Received 15 January 2007; received in revised form 12 September 2007; accepted 18 September 2007
Available online 18 October 2007
Abstract

Computationally efficient nonreflecting boundary conditions are derived for the Euler equations with acoustic, entropic
and vortical inflow disturbances. The formulation linearizes the Euler equations near the inlet/outlet boundaries and
expands the solution in terms of Fourier–Bessel modes. This leads to an ‘exact’ nonreflecting boundary condition, local
in space but nonlocal in time, for each Fourier–Bessel mode of the perturbation pressure. The perturbation velocity
and density are then calculated using acoustic, entropic and vortical mode splitting. Extension of the boundary conditions
to nonuniform swirling flows is presented for the narrow annulus limit which is relevant to many aeroacoustic problems.
The boundary conditions are implemented for the nonlinear Euler equations which are solved in space using the finite vol-
ume approximation and integrated in time using a MacCormack scheme. Two test problems are carried out: propagation
of acoustic waves in an annular duct and the scattering of a vortical wave by a cascade. Comparison between the present
exact conditions and commonly used approximate local boundary conditions is made. Results show that, unlike the local
boundary conditions whose accuracy depends on the group velocity of the scattered waves, the present conditions give
accurate solutions for a range of problems that have a wide array of group velocities. Results also show that this approach
leads to a significant savings in computational time and memory by obviating the need to store the pressure field and cal-
culate the nonlocal convolution integral at each point in the inlet and exit boundaries.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many unsteady compressible flow problems are characterized by unsteady nonlinear interactions in a finite
source region and wave propagation in the outer region. Unsteady compressible flow calculations in infinite
domains require boundary conditions to satisfy the causality condition that all waves are outgoing [1]. In
external problems, acoustic waves propagate to the far-field, in a reference frame moving with the mean flow,
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as nondispersive waves at the speed of sound. In this case, the Sommerfeld radiation condition can be general-
ized and local boundary conditions, which use local information in space and time, have been derived [2] for
the wave equation using asymptotic solutions in the limit where the length scale of the source region is small
relative to the distance to the outer boundary. When the flow domain is internal, such as in ducts and nozzles,
interaction with the duct walls makes the propagation of acoustic waves more complex and nonlocal condi-
tions in both space and time are required in order to obtain exact nonreflecting boundary conditions. While
exact conditions have been derived [3], they require storing information over all of space and time and thus are
impractical to implement. This has led to the general use of approximate local boundary conditions [4,5] which
are only exact for one-dimensional flows. Moreover, the error introduced by the local boundary conditions is
problem dependent and unknown since the error depends on the angle of propagation of the acoustic wave,
which is not a priori known, relative to the boundary.

Much of the recent work on nonreflecting boundary conditions has concentrated on their formulation for
different geometries and equally importantly their efficient implementation [6–10] to simple problems governed
by the wave equation. The efficient implementation of nonlocal boundary conditions for internal problems is
especially difficult because they are inherently nonlocal in both time and space. One approach to improve the
efficiency of implementation is to utilize algorithms for the convolution integrals which appear and compress
the nonlocality in time [9–11].

The focus of this paper is to use the physics of the problem to minimize the nonlocality in space. An exact
nonreflecting boundary condition for the three-dimensional wave equation in a duct was derived in a recent
paper [6] by expanding the solution in terms of the azimuthal and radial (Fourier–Bessel) modes. The resulting
coefficient of each mode is governed by a one-dimensional wave equation which is local in space but nonlocal
in time for each Fourier–Bessel mode. In ducts, due to phase cancellation, there are many modes which do not
propagate to the inflow/outflow boundaries but are instead cut-off [12]. The effectiveness of the boundary con-
ditions in the present paper relative to the traditional method, where the boundary condition is applied at each
grid point in the computational boundary, is most significant when the number of modes needed to accurately
represent the pressure field is much less than the number of grid points at the inflow/outflow boundaries. For
example in aeroacoustics, a significant source of noise and vibration is produced by the interaction of wakes
with structural struts and rotors. The resulting azimuthal wavenumbers that are produced are a linear com-
bination of the number of rotors and stators whose counts are often quite different. As a result, relatively few
acoustic modes propagate to the inflow/outflow boundaries. However, fine grids are still needed to resolve the
wakes shed from the structural struts and rotors. In the present method the inflow/outflow boundary condi-
tions are independent of the fine grid and can be implemented with a relatively small number of modes.
Another example occurs in heated flows where the unsteady heat release generates sound waves which prop-
agate to the far-field. In these problems it is experimentally observed [13] that the unsteadiness is dominated by
relatively low frequencies where only the lowest order azimuthal modes can propagate to the far-field. The
number of propagating modes is a small finite subset of all the modes and so accurate representation of
the pressure is obtained using a small finite number of propagating and weakly decaying modes. Again fine
grids are needed to accurately resolve the vortical and entropic disturbances induced by the heat addition.
Thus, for these types of problems, avoiding the need to store information throughout the computational
boundary will significantly reduce the computational time and memory requirements and make it possible
to extend the formulation to nonlinear problems provided that strong nonlinear effects are confined to a finite
inner region.

For turbomachinery applications, using a superposition of a small number of propagating and weakly
decaying modes to construct exact solutions has been successfully applied to the linearized Euler equations
in the frequency domain. Hall and Crawley [14] first used this approach by expanding the velocity and pres-
sure field in terms of a small number of modes and Fang and Atassi [15] showed that only the pressure needs
to be expanded in terms of modes to avoid difficulties with representing the wakes downstream of the cascade.
These methods are appropriate for forced response problems where the equations in the entire flow domain
are linear and the problem is dominated by a known characteristic frequency. In these applications the number
of propagating acoustic modes is determined at the characteristic frequency. Then the number of evanescent
modes used is determined when the energy content of the higher order acoustic modes in the numerical solu-
tion is small and the solution becomes independent of the number of modes used in the normal mode expan-
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sion. This approach has also been extended to calculate the scattering of sound in three-dimensional flows [16]
and in nonuniform swirling flows [17]. However, these methods are not appropriate for problems where non-
linearities occur within the flow domain.

The present paper implements nonreflecting boundary conditions in a finite volume discretization of the
Euler equations. The main objectives of the paper are: (i) generalizing and implementing the nonlocal condi-
tions derived for the wave equation in [6,8,10] to the Euler equations with incident vortical, acoustic and
entropic disturbances at the inflow boundary, (ii) showing how these conditions can be extended to nonuni-
form internal flows, (iii) implementing the boundary conditions in a very efficient manner especially for
problems characterized by low frequencies such as flutter, combustion instability, etc. where only a few
Fourier–Bessel modes propagate to the inflow/outflow boundaries and (iv) assessing the impact of linearizing
near the inflow/outflow boundaries, which introduces errors of the order of the square of the amplitude, by
solving several computational examples from aeroacoustics with the nonlinear Euler equations.

In Section 2, the governing equations in the flow domain are presented. In Section 3, the nonreflecting
boundary conditions are derived by linearizing the Euler equations about a uniform mean flow and it is shown
how to extend them to problems where incident vorticity and pressure waves are imposed at the inlet of the
domain. In Section 4, the inflow/outflow conditions are extended to swirling flows. In Section 5, the implemen-
tation of the conditions for the discretized equations is presented. In Section 6 results are presented for the
propagation of acoustic waves and the scattering of a vortical wave by a cascade where accurate boundary
conditions are needed to obtain high fidelity solutions. The effect of the number of modes used in the Fou-
rier–Bessel expansion on the computational time and accuracy is also studied. The results are compared with
the commonly used local boundary conditions of Thompson [4,5].

2. Governing equations in flow domain

We consider an inviscid nonheat conducting flow. The conservation equations for fluid motion in the vol-
ume, X, bounded by the surface, oX, are then expressed by
o

ot

Z
X

W i dXþ
Z

oX
F C

ijnj dC ¼ 0; ð1Þ
where nj is the unit normal of the surface oX, the vector, Wi and tensor, F C
ij , are the conservation variables and

convective fluxes for mass, momentum and energy, respectively and are given explicitly in cartesian coordi-
nates as
W i ¼ ½q qu qv qw E�T;
F ij ¼ ½quj pd1j þ quuj pd2j þ qvuj pd3j þ qwuj ðE þ pÞuj�T;

ð2Þ
where q is the density, uj = [u v w]T are the cartesian components of the velocity field, Fij is the jth column of
the (5 � 3) matrix F C

ij , p is the pressure and E ¼ qðcvT þ 1=2
P

ju
2
j Þ is the total energy with, T, the temperature

and cv, the specific heat at constant volume.
In the test problems considered, the geometry is an annular duct whose inner and outer radii are r = rh

(hub) and r = rt (tip), respectively. At the surface of the duct, r = rh, rt, and at any solid bodies which lie
in the computational domain, the impermeability condition
ujnj ¼ 0; ð3Þ
is locally applied.
We divide the domain into quadrilateral cells, fixed in time, by means of a structured mesh which is mapped

into a rectangular grid with imax, jmax and kmax elements in each direction i, j and k through a bilinear mapping
in each element. Taking ~wijk as the cell-averaged solution vector at the cell (i, j,k), Eq. (1) can be written in
semi-discrete form as
d

dt
ðXijk~wijkÞ þ

X6

n¼1

ð~F CÞndCn ¼ 0; ð4Þ
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where dCn is the area of the face n and Xijk is the volume of the cell. The solution is stored at the cell center and
the fluxes are evaluated at the cell faces using second order accurate interpolation. The equations are then
solved with second order accuracy in space and time using the MacCormack two-step predictor–corrector
scheme. In what follows, we nondimensionalize the length, velocity and density with respect to rt, the mean
speed of sound, c0, and the mean density, q0, respectively.

3. Inflow/outflow boundary conditions for uniform mean flows

Inflow/Outflow boundary conditions are required which satisfy the physical causality condition at infinity
to completely specify the problem. In order to specify an exact causality condition, solutions must be derived
near the inflow/outflow boundaries which lie in the propagation region of the domain. In aeroacoustic appli-
cations the propagation region is characterized by small amplitude waves propagating in a nonuniform mean
flow that is often swirling. In this section, we first derive nonreflecting boundary conditions for the Euler equa-
tions linearized about a uniform mean flow. In the next section, we extend these results and show the range of
validity of the formulation for swirling flows.

We assume that the boundaries are located sufficiently far from the source region where nonlinear effects
and vorticity are small such that the flow is approximated by the linearized Euler equations perturbed about a
uniform mean flow. In this propagation region, Xp, the flow variables are decomposed into a sum between
their steady mean values and their unsteady disturbances,
U ¼ U0 þ uðx; tÞ; x 2 Xp;

p ¼ p0 þ p1ðx; tÞ;
q ¼ q0 þ q1ðx; tÞ

ð5Þ
where U0 = [Mx 0 0]T is the mean velocity field, Mx is the mean axial Mach number, p0 = 1/c is the dimen-
sionless mean pressure, q0 = 1 is the dimensionless mean density and u, p1(x, t), q1(x, t) are the unsteady veloc-
ity, pressure and density, respectively. The unsteady quantities are assumed small, i.e. {juj, jp1j, jq1j}�
{Mx,p0,q0}.

The disturbances at the boundary are the sum of incident and scattered disturbances,
u ¼ ui þ us; ð6Þ
q1 ¼ qi þ qs; ð7Þ
p1 ¼ pi þ ps; ð8Þ
where the subscripts ‘i’ and ‘s’ denote the prescribed incident and unknown scattered disturbances, respec-
tively. For a uniform mean flow, we can split a general solution to the linearized Euler equations into inde-
pendent acoustic, vortical and entropic disturbances. As a result, the velocity field may be decomposed into
a convected solenoidal velocity field and an irrotational field [18] which produces pressure fluctuations but
no entropy fluctuations. The pressure fluctuations are associated with the acoustic modes in the duct and they
propagate with frequency dependent phase velocity due to reflections off the boundaries of the duct [12]. The
vortical and entropic disturbances convect with the mean flow without producing a pressure field and the
entropic disturbances only produce density fluctuations.

The acoustic disturbances are governed by the convective wave equation,
D2
0

Dt2
�r2

� �
p1ðx; tÞ ¼ 0; x 2 Xp; ð9Þ
where the convective derivative is defined,
D0

Dt
� o

ot
þMx

o

ox
:

Once the pressure perturbation is known, the velocity and density are given by,
D0u

Dt
¼ �rp1 ð10Þ
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and
D0q1

Dt
¼ D0p1

Dt
; ð11Þ
respectively. Note the velocity field associated with the vortical disturbances is convected and satisfies (10)
with the right hand side zero. In what follows, we derive nonreflecting boundary conditions at the inlet/exit
of the computational domain from solutions to (9)–(11) in terms of the unknown variables u, p1, q1 and an
incident wave which is measured or specified as a function of time.

3.1. Outgoing solutions to the wave equation

Eq. (9) has two solutions: one which carries energy out of the flow domain and one which carries it into the
flow domain. A nonreflecting boundary condition must then be applied so that only the outgoing solutions to
(9) exist. Following [6], we assume p1(x, t) can be uniformly expanded in terms of the annular duct
eigenfunctions,
p1ðx; r; h; tÞ ¼
Xn¼1
n¼1

Xm¼1
m¼�1

pmnðx; tÞeimhRmnðrÞ; ð12Þ
where the Fourier–Bessel coefficient, pmn, is given by
pmnðx; tÞ ¼
1

2pKmn

Z 1

rh

Z 2p

0

rRmnðrÞe�imhp1ðx; r; h; tÞdhdr; ð13Þ
where
Kmn ¼
Z 1

rh

rjRmnj2 dr
and the orthogonal eigenfunctions, Rmn(r), are a combination of Hankel functions [1],
RmnðrÞ ¼ H ð1Þm ðkmnrÞ � dH ð1Þm ðkmnrhÞ=dr

dH ð2Þm ðkmnrhÞ=dr
H ð2Þm ðkmnrÞ; ð14Þ
where kmn is the eigenvalue determined by the impermeability condition at the hub and tip of the annulus.
Following [6], we substitute (12) into (9) and Eq. (9) reduces to a one-dimensional wave equation for each

mode,
D2
0

Dt2
� o

2

ox2
þ k2

mn

� �
pmnðx; tÞ ¼ 0: ð15Þ
Using the Laplace transform results in two first order equations governing the downstream and upstream
propagation of the wave,
dp̂mnðx; sÞ
dx

þ 1

b2
ð�Mx þ 1Þsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2k2

mn

q
� s

� �
p̂mn ¼ 0; ð16Þ

dp̂mnðx; sÞ
dx

� 1

b2
ðMx þ 1Þsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2k2

mn

q
� s

� �� �
p̂mn ¼ 0; ð17Þ
where b is the Prandtl–Glauert factor, b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

x

q
, and p̂mn is the Laplace transform of pmn defined by,
p̂mnðx; sÞ �
Z 1

0

e�stpmnðx; tÞdt: ð18Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

Both (16) and (17) can be solved by integrating with respect to x. Since s2 þ k2

mnb
2 is larger than s finite solu-

tions for x ?1 only exist for (16) and finite solutions for x ? �1 only exist for (17). Thus outgoing waves at
the downstream boundary are governed by (16) and outgoing waves at the upstream boundary are governed
by (17).
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Applying the inverse Laplace transform to (16) and (17) each Fourier–Bessel mode must satisfy the relation
Z t

0

opmn

ot0
� ð1�MxÞ

opmn

ox

� �
J 0½kmnbðt � t0Þ� þ kmn

b
p�mnðt0Þð1�MxÞJ 1½kmnbðt � t0Þ�

� �
dt0 ¼ 0: ð19Þ
The plus (minus) denotes a local nonreflecting condition at the outlet (inlet) of the domain for each Fourier–
Bessel mode needed to accurately represent the pressure field at the computational boundaries. Since in many
applications a small number of acoustic modes propagate only a few Fourier–Bessel coefficients need to be
used. As a result, the condition, while nonlocal in time, is very efficient for time-dependent problems domi-
nated by a few propagating acoustic modes.

The most commonly used boundary conditions are those based on the method of characterstics [4,5]. Thus,
it is interesting to compare the present boundary conditions to the linearized characteristic boundary condi-
tions. Summing over the Fourier–Bessel modes Eq. (19) can be written in the form,
L�NRp1¼
op1

ot
�ð1�MxÞ

op1

ox
�ð1�MxÞ

X
m

X
n

kmn

b
RmnðrÞeimh

Z t

0

b2 opmn

ox
�Mx

opmn

ot0

� �
J 1½ðkmnbðt� t0Þ�dt0 ¼ 0:

ð20Þ
This form enables a straightforward comparison with the method of characteristics, by taking the limit
kmn ? 0. Moreover, it shows the error introduced by characteristic boundary conditions for higher order
modes where kmn 6¼ 0. Note that this boundary condition reduces to op1

ox ¼ 0 for a steady disturbance. Thus
Eq. (20) can be written for the total pressure field p.

3.2. Boundary condition implementation for incident vortical and acoustic waves

In this subsection, we show the extension of Eq. (20) for problems with incident vortical and acoustic waves
at the inlet. Eqs. (6)–(8) show that the disturbances can be decomposed into known incident and scattered dis-
turbances. In a uniform flow, the acoustic, vortical and entropic disturbances are independent [18]. The vor-
tical field is convected and pressure-free, the acoustic field is irrotational and the entropy field is a pure density
fluctuation that convects with the mean flow. Thus substituting a pressure field, pi, associated with an incident
acoustic wave into the boundary condition (20) yields,
L�NRpi ¼
2

1þMx

opi

ot
: ð21Þ
Note this relation eliminates the axial derivatives from (20) and only requires knowledge of the incident pres-
sure at a single inlet plane.

In the present case, where we specify the incident disturbance at the inlet, the perturbation pressure is the
sum of the incident and the outgoing scattered disturbances. The nonreflecting boundary condition must be
applied on the outgoing pressure field, ps = p1 � pi. Thus, the inlet pressure boundary condition (20) in terms
of the perturbation pressure at the inlet is then
L�NRp1 ¼
2

1þMx

opi

ot
: ð22Þ
At the exit, we do not, in this paper, specify an incident acoustic disturbance, i.e. p1 = ps, and thus the non-
reflecting condition takes the form,
LþNRp1 ¼ 0: ð23Þ

It is convenient to use Eq. (20) to obtain an exact relation for the axial velocity at the inlet,
p1 þ ux ¼ ð1�MxÞ
X

m

X
n

RmnðrÞeimh kmn

b

Z t

0

fðuxmns
ðt0Þ þMxpmns

ÞJ 1½kmnbðt � t0Þ�gdt0 þ pi þ uxi
ð24Þ
where uxs ; ps are the scattered axial velocity and pressure perturbations, respectively.
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To obtain the axial velocity field at the exit of the computational domain, we discretize the axial component
of (10) where the pressure is given by (23). The circumferential and radial velocity are also determined from
the linearized momentum equation
D0uh

Dt
¼ � 1

r
op
oh
; ð25Þ

D0ur

Dt
¼ � op

or
: ð26Þ
At the inlet, however, it is necessary to eliminate the axial derivatives to avoid downwinding the convective
terms. Since the scattered field is irrotational, we can replace the axial derivatives in (25) and (26) by using
the relations
ouh

ox
¼ 1

r
oux

oh
� 1

M
oug

h

ot
þ 1

r
oug

h

oh
; ð27Þ

our

ox
¼ oux

or
� 1

M
oug

r

ot
þ 1

r
oug

r

oh
; ð28Þ
where ug
h; u

g
r are the circumferential and radial components of the incident vortical disturbance respectively.

Finally, the density is related to the pressure by Eq. (11). At the inlet, this relation simplifies to p s
1 ¼ qs

1 for
the outgoing pressure wave.

In Section 5, the nonlocal boundary conditions for the inflow and outflow boundaries are implemented. We
denote BC1 as the nonlocal boundary conditions at the inflow and outflow boundaries consisting of Eqs. (11),
(22), (24), (27) and (28) at the inlet and Eqs. (11) and (23) at the exit. To test the implementation of the nonlocal
boundary condition, we compare its performance, in Section 6.1, to an inlet boundary condition, BC2, which
consists of imposing the incident disturbance at the inlet and using Eqs. (11) and (23) at the exit. This boundary
condition is exact when there are no reflected waves inside the domain. We also implement a local boundary
condition, which is denoted by BC3, by taking kmn = 0 in relations (22) and (24) at the inlet and Eq. (23) at
the exit.

4. Inflow/outflow boundary conditions for nonuniform potential mean flows

The mean flow in many internal flows such as those with turbomachinery contains swirl. As a result, even in
the propagation region, the mean flow is not uniform. In this section, we extend the applicability of the meth-
odology described above to swirling turbomachinery flows. The propagation of disturbances in a nonuniform
fully developed flow has been examined in [19–21] and the disturbances are governed by a nonconstant coef-
ficient wave equation for the potential. Moreover, recent work [22–24] on the propagation of potential distur-
bances has shown that this model can also be easily extended to incorporate the effect of slow changes in the
area of the duct in the high frequency limit. In what follows, we start with a potential mean flow and determine
the conditions where the exact nonreflecting boundary conditions derived for a uniform mean flow can be
extended to swirling flows. In the propagation region, Xp, the flow variables are decomposed into a sum
between their steady mean values and their unsteady disturbances,
U ¼ U0ðxÞ þ uðx; tÞ; ð29Þ
p ¼ p0ðxÞ þ p1ðx; tÞ; ð30Þ
q ¼ q0ðxÞ þ q1ðx; tÞ: ð31Þ
The potential mean flow is assumed to vary only with r and is of the form,
U0 ¼ UxðrÞex þ U hðrÞeh; ð32Þ

where ex and eh are the unit vectors in the axial and azimuthal directions, respectively for the velocity field.

The potential velocity field, /(x, t), for small-amplitude acoustic disturbances is governed by the convective
wave equation [19],
L/ ¼ 0; x 2 Xp; ð33Þ
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where
L � 1

c2
0

D2
0

Dt2
� 1

q0

r 	 ðq0rÞ; ð34Þ
where the convective derivative is defined,
D0

Dt
� o

ot
þU0 	 r:
The pressure is related to the potential function by
p1 ¼ �q0

D0

Dt
/: ð35Þ
4.1. Narrow annulus limit

In many compressor and turbine stages, the hub-tip ratio is small, suggesting that the propagation of acous-
tic waves in swirling flow governed by (33) can be simplified. We consider the limit, (rt � rh)rm ? 0, where
rm = 0.5 (rt + rh), while (rt�rh) remains finite and introduce y ¼ r�rh

rt�rh
. Substituting the eigenexpansion in Eq.

(12) into Eqs. (34) and (35) and neglecting terms of O(1/rm) yields the following eigenvalue problem for the
radial eigenfunctions,
d2Rmn

dy2
þ ðrt � rhÞ2 k2

mn �
m2

r2
m

� �
Rmn ¼ 0; ð36Þ
and the impermeability condition at the hub and tip of the duct. Note kmn is the eigenvalue and m can be large
such that mðrt�rhÞ

rm
¼ Oð1Þ.

The radial eigenfunction and eigenvalues have the solution,
RmnðyÞ ¼ cosðnpyÞ;

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2p2

ðrt � rhÞ2
þ m2

r2
m

s
:

ð37Þ
The propagation of waves can then be reduced to a constant coefficient wave equation. As in Section 3, we
transform the convective wave equation for each Fourier–Bessel component to obtain two ordinary differen-
tial equations governing the waves with upstream and downstream going group velocities, respectively:
dp̂mnðx; sÞ
dx

þ 1

b2
�Mx

s
c0

þ im
Mh

rm

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
c0

þ im
Mh

rm

� �2

þ b2k2
mn

s2
4

3
5p̂mn ¼ 0; ð38Þ

dp̂mnðx; sÞ
dx

� 1

b2
Mx

s
c0

þ im
Mh

rm

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
c0

þ im
Mh

rm

� �2

þ b2k2
mn

s2
4

3
5p̂mn ¼ 0 ð39Þ
where p̂mn is the Laplace transform of pmn, Mx(rm), Mh(rm) and b ¼ 1�M2
x is the Prandtl–Glauert factor.

Using the Convolution theorem to take the inverse Laplace transform yields the nonreflecting boundary
conditions,
Z t

0

e�im
Uh
rm
ðt�t0Þ 1

c0

opmn

ot
� ð1�MxÞ

opmn

ox

� �
J 0½kmnc0bðt � t0Þ� þ kmnð1�MxÞpmn

b
J 1½kmnbðt � t0Þ�

� �
dt0 ¼ 0
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where the plus (minus) denotes the nonreflecting condition at the outlet (inlet) of the domain and kmn is given
by (37). Note that this equation is similar to that of the uniform flow relation, (19), except for the Doppler
shift resulting from the mean flow swirl.

5. Numerical implementation of the boundary conditions

In this section, we present the numerical implementation of the wall boundary condition, the periodicity
condition and the inflow/outflow implementation. Several model problems are solved in Section 6 which uti-
lize these boundary conditions.

5.1. Wall boundary conditions

The impermeability condition at the solid boundaries (hub, tip, vanes) implies that the velocity normal to
the wall vanishes. Thus, the convective flux at the wall is left with the pressure terms only. The required value
of the pressure at the wall is obtained with a 3-point one-sided scheme, which for a uniform grid is given by
pw ¼
1

8
ð15p1 � 10p2 þ 3p3Þ; ð41Þ
where the subindex i = 1,2,3 indicates the relative cell position with respect to the wall along the normal direc-
tion (1 being the closest and 3 the furthest).

5.2. Periodicity condition

In the h direction the computational domain covers the range [0,hmax]. When the entire annulus is consid-
ered, hmax = 2p, a periodic boundary condition is applied without a loss of generality. For the case of wake
interaction with a flat plate cascade, considered in Section 6.2, the periodic condition is applied upstream
and downstream of the leading and trailing edges, respectively. If we wish to validate our calculation against
linear solutions, small-amplitude disturbances are imposed at the inlet and a reduction in the azimuthal size of
the domain can be obtained by using a quasi-periodic boundary condition over a sector. In what follows, a
periodic or quasi-periodic boundary condition is applied to relate the disturbances at both ends
Yðx; hmax; r; tÞ ¼ Yðx; 0; r; tÞeir; ð42Þ
where Y = [q1,ux,uh,ur,p1]T are the primitive variables in cylindrical coordinates, r = mhmax and m is the cir-
cumferential wavenumber. For the particular case where r is 2p multiplied by an integer number, a periodic
condition occurs: Y(x,hmax, r, t) = Y(x, 0, r, t).

5.3. Inflow/outflow implementation

Both the Fourier–Bessel coefficients and the nonlocal convolution integral must be approximated to imple-
ment the inflow/outflow boundary conditions. In what follows, we present the implementation used to approx-
imate these integrals. Eq. (13) gives the relationship to determine the Fourier–Bessel coefficient in terms of the
pressure perturbation. In a finite volume scheme, the pressure is evaluated at the midpoint of the volume making
the midpoint rule a very convenient method of integration. We approximate the Fourier–Bessel coefficients by
pmnðx; tÞ ¼
XNth

j¼1

XNr

k¼1

DrjkDhjkp1ðr
jk; h


jk; x; tÞe

�imh
jk Rmnðr
jkÞ; ð43Þ
where r
jk; h


jk are the coordinate locations at the midpoint of a cell volume.

For implementation, the form of the nonreflecting boundary conditions (19) is convenient for implementa-
tion because it does not require computing the Fourier–Bessel coefficients at several axial grid locations to cal-
culate the convolution integrals. Instead, using the trapezoidal rule and summing over the modes Eq. (19) at
time t = tk takes the approximated form,
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opk
1

ot
� ð1�MxÞ

opk
1

ox

� �
¼ �

X
m

X
n

RmnðrÞeimh jk�1
mn þ

Xk�2

p¼1

ðjp
mn þ jpþ1

mn Þ
 !

; ð44Þ
where the kernel, jp
mn ¼

opp
mn

ot0 � ð1�MxÞ opp
mn

ox

	 

J 0½kmnbðtk � t0pÞ� þ kmn

b p�mnð1�MxÞJ 1½kmnbðtk � t0pÞ�. The axial

derivative of the pressure in the nonreflecting boundary conditions (22)–(24) is evaluated using second order
accurate one-sided differences.

6. Numerical results

In this section, we examine the performance of the inflow/outflow boundary conditions on several test cases
to study the effectiveness of the nonlocal nonreflecting boundary condition implementation. The first case
computes the transmission and reflection at the inflow and outflow boundaries of sound waves in an annular
duct. This problem is ideal for assessing the error introduced by the inflow/outflow boundary conditions since
the solutions can be compared against normal mode solutions for a given frequency and azimuthal wavenum-
ber. Moreover, we focus on the propagation of low order azimuthal modes (m = �2,�1,0,1,2) which char-
acterize the acoustic field of heated flows such as those which occur in combustors and augmentors of
aeroengines. Sensitivity of the solutions to the number of modes used in the Fourier–Bessel expansion and
the size of the computational domain is also tested and results are compared against the local boundary con-
ditions obtained in the limit kmn ? 0. The second test case calculates the scattering of a fan wake by a cascade
of flat plate stator vanes. This is a problem of great practical interest in aeronautics and it is ideally suited for
the boundary conditions presented here because the number of fan blades and stator vanes are often quite
different resulting in a small finite number of circumferential modes which propagate to the far-field. This
problem is also an interesting test of the boundary conditions because, in addition to the scattering of the wake
into different acoustic modes, in the linear inviscid limit a vortex sheet (velocity discontinuity) lies downstream
of the plate and the leading edge pressure has a square root singularity. As a result, this case also requires the
outflow boundary condition to handle regions of strong vorticity which convect downstream of the flat plate
and must pass through the outflow boundary without reflection.

6.1. Multi-dimensional wave propagation in uniform mean flows

An annular duct with hub-tip ratio rh/rt = 0.5 and a uniform mean flow Mach number, Mx = 0.5 is chosen.
A time-harmonic disturbance which is a normal mode of the duct is imposed at the inflow boundary and the
propagation of the multi-dimensional acoustic wave is calculated. Ideally, the acoustic wave should propagate
downstream with zero reflections and its long-time solution should approach the time-harmonic normal mode
solution [6].

The normal mode solution of the acoustic disturbance is given by
Yi ¼ AðrÞeiðmhþkþmnx�~xtÞ; ð45Þ
where the circumferential wavenumber m, radial mode order n, frequency ~x are inputs and
Yi ¼ ½qi; uxi

; uhi
; uri

; pi�
T. The axial wavenumber is given by
k�mn ¼
�Mx ~x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 � ð1�M2

xÞk
2
mn

q
1�M2

x

; ð46Þ
where +(�) indicates modes propagating with a group velocity downstream (upstream). Note the phase veloc-
ity is a function of frequency. The amplitude of the incident wave is
AT ¼ ai;a Rmn;
kþmn

~x�Mxk
þ
mn

Rmn;
m

rð~x�Mxk
þ
mnÞ

Rmn;
�i

~x�Mxk
þ
mn

R0mn;Rmn

� �
ð47Þ
with R0mnðrÞ ¼
dRmnðrÞ

dr and ai,a a constant factor. Local conditions perform well when kmn=~x is small and poorly
when kmn=~x is close to one. Note from (47) that the amplitudes of the velocity and density are dependent on
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the incident pressure. The relations are determined from the momentum equation and the isentropic relation
between the pressure and density perturbation.

6.1.1. Propagation of different duct modes
To test the performance of the boundary conditions over a range of phase speeds we compute the propa-

gation of acoustic waves for several values of the reduced frequency, ~x ¼ xrm=c0 ¼ 0:4p; p; 2p; 4p. The azi-
muthal wavenumber is m = �1 for these cases. Note that for the two highest frequencies there are two and
three propagating modes, respectively. In these cases, ~x ¼ 2p; 4p, we input the second (n = 2) and third
(n = 3) radial modes, respectively, to see the accuracy with which higher order modes are calculated. The three
propagating radial eigenfunctions of the incident mode, Rmn(r), and their derivatives, R0mnðrÞ, are plotted in
Fig. 1. For the two low frequencies ~x ¼ 0:4p; p only one acoustic mode propagates and the eigenfunction
is denoted by the circles. When the frequency increases to ~x ¼ 2p a second propagating mode occurs which
is denoted in the figure by the pluses and whose eigenfunction crosses the radial axis once. For ~x ¼ 4p, a third
mode propagates with even larger radial variation which is denoted by the triangle symbols. Thus each fre-
quency, ~x ¼ 0:4p; p; 2p; 4p contains modes which propagate with different phase velocities and their corre-
sponding values of kmn/x are 0.81, 0.32, 0.78 and 0.76, respectively. Note that the eigenfunctions cross the
radial axis one and two times for the incident waves of the two cases corresponding to ~x ¼ 2p; 4p, respectively.

The amplitude of the incident wave is chosen to be small, ai,a = 0.001, to obtain an almost linear solution
which can be compared with the known analytical solution of the linearized Euler equations. The size of the
domain in the x and h directions is 0.1 and 2p, respectively. A dense uniform grid, shown in the title of Fig. 2,
is used to separate the error at the boundary from the truncation error of the finite volume scheme. A periodic
condition is applied in the h direction and a CFL number of 1/(1 + Mx) is used.

In what follows, we compare the numerical results with three different sets of boundary conditions at the
inlet and exit boundaries. The first two boundary conditions, BC1 and BC2, are both nonlocal and nonreflect-
ing. BC1 corresponds to using the nonlocal boundary conditions presented in Section 3 at both the inlet and
exit whereas BC2 applies the same nonreflecting boundary condition at the exit but at the inlet the following
incident normal mode in (47) is enforced: W = Wi = [1 + qi, (1 + qi) 	 (Mx + ui), (1 + qi)vi,(1 + qi)wi,Ei]

T at
x = xinlet. Note that the five variables are not imposed independently but rather are obtained from the incident
Fig. 1. Radial eigenfunction (left) and its derivative (right) of the incident acoustic mode at several values of the reduced frequency
~x ¼ xrm=c0 : 0:4p;p; 2p; 4p.



Fig. 2. Propagation of an incident acoustic wave at several values of the reduced frequency ~x: (a) 0.4p, (b) p, (c) 2p, (d) 4p. The relative
error in q1 for the solutions obtained with boundary conditions BC1, BC2 and BC3 is plotted versus time with thin-dashed, thick-dashed
and thick-dashed lines, respectively.
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pressure field, pi. For example, the velocity perturbations are related to the pressure through the linear
momentum equation, (10). This condition amounts to imposing that the nonincident field is zero which is
appropriate in this case but in the general case where scattering occurs, such as in fan wake stator interaction,
this condition is highly reflective. The purpose of comparing BC1 and BC2 is to assess the performance of the
numerical implementation at the inflow boundary which requires taking information from inside the compu-
tational domain (downstream) and must be done carefully to avoid numerical instabilities [25]. The third
boundary condition, BC3, uses a local boundary condition at the exit, where kmn = 0 in (19) and (23), while
imposing the known incident disturbance at the inlet as in BC2.

The convergence of the solutions using the three sets of boundary conditions are presented in Fig. 2 with
thin-dashed (BC1), thick-dashed (BC2) and thick-continuous lines (BC3), respectively. The number of grid
points used in each coordinate direction, (x,h, r) is indicated in the title of each subplot. The average error
at any time step t is calculated as
e ¼ 1

ncellsjai;aj
Ximax

i¼1

Xjmax

j¼1

Xkmax

k¼1

jq1;ijk � qexact
1;ijk j ð48Þ
with ncells = imax 	 jmax 	 kmax. To obtain a relative measure of the convergence we divide the average error by
the average error at the first time step t = dt. Note that since this test problem depends on a single frequency
and the average error involves the magnitude of the difference between the density and the exact normal mode
solution the average error should not vary in time once the solution has reached a time-periodic solution.

For large t, the error, as expected, for the two nonlocal exact conditions BC1 and BC2 is very similar, while
for the local condition, BC3, it is always much higher. The errors in the converged solution obtained with BC3
at all frequencies are approximately 20.0%, 2.8%, 17.3% an 17.0%, respectively, which are approximately 13, 9,
11 and 12 times higher than the errors obtained with the nonlocal condition BC1 and its subset BC2. The
worst case, shown in the top row of the first column, for the local boundary condition corresponds to the low-
est frequency ~x ¼ 0:4p, where the ratio kmn/x is closest to unity. Even in the best case, ~x ¼ p, where the error
with the local condition is small due to the low value of kmn/x, the error is still much higher than that of the



nonlocal boundary conditions. The excellent agreement between the two exact boundary conditions, BC1 and
BC2, shows that the numerical implementation of the inflow boundary is working and provides comparable
results to imposing the exact solution at the inflow boundary as is done in BC2.

Note that the convergence of the numerical solution to a time-periodic state with the nonlocal boundary
conditions, shown in Fig. 2, is slower for the lowest frequency when compared with the higher frequencies.
For that reduced frequency, ~x
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resolve at the inflow/outflow boundary. Then the dispersion relation, Eq. (46), is used to determine the num-
ber of propagating acoustic modes. After this estimate, we gradually increase the number of modes until the
solution is independent of the number of modes used, i.e. the solution content of the higher order modes is
negligible.

To check the influence of the number of duct modes retained in the expansion and the resulting increase in
computational time, we increase the number of radial, n = Nn, and circumferential modes, m = Nm, used in the
Fourier–Bessel representation of the pressure field. For this study, we input a single incident wave with one
zero crossing, Nn = 2, with reduced frequency ~x ¼ 2p and examine the sensitivity of the numerical solution
with the general inflow/outflow implementation, BC2, to the number of terms used in the Fourier–Bessel
expansion. In the case considered here only the Nn = 2, m = �1 mode should exist in the solution and any
content in the other radial or circumferential modes is a result of error in the numerical solution.

The results showing the relative error of the solution are presented in Fig. 4. Recall that all of the higher
order radial modes, Nn > 2, are exponentially decaying modes. Fig. 4 shows that increasing Nm and Nn does
not modify the convergence of the numerical solution. A slight difference in the error is observed when 6 radial
modes are used in the expansion. This occurs because the grid only contains 50 points in the radial direction
and the error associated with the computation of the Fourier–Bessel coefficients is larger for the highest order
radial modes, n = 5,6.

The impact of the nonlocal boundary conditions and the number of modes used on the computational time
is shown in Table 1. Four different cases were run with a single radial mode and different numbers of circum-
ferential modes in the Fourier–Bessel expansion. The table gives the computational time needed to complete
five time units from a given time t1. In the table, the time, DT ¼ T ðt1þ5Þ�T ðt1Þ

T ð5Þ�T ð0Þ , is normalized by the time it takes to

go from t = 0 to t = 5 using a single Fourier–Bessel mode in BC2. For example, the first row shows that it
takes 1.11 times longer with Nm = 1 and 2.10 times longer with Nm = 6 to go from t = 5 to t = 10 than it does
to go from t = 0 to t = 5 with Nm = 1. These results show the extent with which the nonlocal boundary con-
ditions slow down the computation. The cost of evaluating the nonlocal boundary condition increases linearly
with time and so as the computation continues the computation is slowed down due to the linear increase in
Fig. 4. Influence of the number of duct modes retained in the absorbing boundary conditions (22)–(24) at ~x ¼ 2p. The relative error in q1

obtained with BC2 is plotted in the following cases: (a) Top: Nm = 1 and Nn = 1, 6. (b) Bottom: Nn = 1 and Nm = 1, 6.



Table 1
Computational time increase due to nonlocal boundary conditions where Nm refers to the number of circumferential modes used

DT Nm = 1 Nm = 2 Nm = 4 Nm = 6

tð10Þ�tð5Þ
tð5Þ

1.11 1.30 1.70 2.10

tð20Þ�tð15Þ
tð5Þ

1.29 1.67 2.44 3.20

tð40Þ�tð35Þ
tð5Þ

1.66 2.40 3.92 5.40

tð60Þ�tð55Þ
tð5Þ

2.02 3.12 5.34 7.60

Only one radial mode, Nn, was used in each case.
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time needed in evaluating the convolution integrals. For example even for Nm = 1, the time it takes to go from
t = 55 to t = 60 is twice as long as it takes to go from t = 0 to t = 5. Furthermore, when there are 6 modes in
the expansion it takes 7.60 times as long. These results illustrate the computational cost of using nonlocal
boundary conditions and the importance of minimizing the number convolution integrals that are evaluated
by minimizing the number of Fourier–Bessel modes.

In many applications where the frequencies are relatively low such as combustion generated noise, only a
few low order azimuthal modes propagate in the duct. Motivated by this application, we impose four incident
acoustic modes with azimuthal wavenumbers, m = �1,0,1,2 and compute their transmission coefficients. The
amplitudes of each of the incident modes are a�11 = 1.0, a01 = 0.5, a11 = 0.33 and a21 = 0.25, respectively
where the first index denotes the azimuthal mode and the second the radial mode. The transmission coeffi-
cients normalized by the amplitude of the incident waves are shown in Table 2 and are all close to unity which
denotes perfect transmission through the boundary.

6.1.3. Influence of domain size

Another means of assessing the nonreflecting boundary conditions is to ensure that the numerical solution
is independent of the size of the domain. Three different meshes which only differ in their length in the axial
direction: small (Dx = 0.1), medium (Dx = 0.3) and large (Dx = 0.9) are used to compute the propagation of
the second radial acoustic mode with frequency, x = 2p and amplitude, ai,a = .001. The meshes are all uni-
form, with the same element size along the three cylindrical coordinates. A single mode is retained in the
absorbing boundary conditions, and quasi-periodicity is used to reduce the computational domain to a single
element in the h-direction.

Table 3 shows the amplitudes of the outgoing duct modes at the inlet and exit calculated with BC1 and BC3
normalized by the amplitude of the incident mode. The exact values should be unity at the exit boundary and
zero at the inlet boundary. As expected the nonlocal boundary condition, BC1, at the inlet and exit of the
domain yields a much more accurate solution than the local boundary condition, BC3. For example, the trans-
mission coefficient at the exit is approximately 1.01 for the nonlocal boundary condition and is only .83 using
the local boundary condition. Both boundary conditions exhibit some sensitivity to the domain size at the inlet
of the domain, however, the sensitivity falls within the error of the calculation and is relatively small.
Table 2
Amplitude of the transmitted acoustic mode at the exit for each propagating mode m = �1,0,1,2, respectively

jpþ�11j=ja�11j jpþ01j=ja�01j jpþ11j=ja11j jpþ21j=ja21j
1.014 1.009 1.014 1.01

Table 3
Amplitude of the transmitted acoustic mode at the inlet and exit for three different domain sizes

Domain size jpþmnj=jai;ajBC1 jpþmnj=jai;ajBC3 jp�mnj=jai;ajBC1 jp�mnj=jai;ajBC3

Small 1.014 0.83 .01 0.18
Medium 1.013 0.82 .01 0.12
Large 1.013 0.82 .01 0.18
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6.2. Scattering of vortical waves by a flat plate cascade

An important problem in unsteady aerodynamics is the interaction of a wake from an upstream rotor with
downstream structural vanes. When the airfoils are modeled as flat plates this problem can be compared
against analytically based solutions which utilize the Wiener-Hopf technique [26,27]. This problem, in the
inviscid limit, is characterized by a pressure field response to the incoming wake which, for high enough fre-
quencies, produces outgoing acoustic waves at the inflow and outflow boundaries. The unsteady pressure field
on the airfoil is dominated by a square root singularity at the leading edge of the plate. Downstream of the
trailing edge lies a vortex sheet which convects with the mean flow velocity. These features make the problem a
challenging one for computational methods and they also test the ability of the outflow boundary to transmit
vortices and wakes without reflections. Often, in applications such as tonal fan noise, the number of blades in
the fan is much smaller number than the number of vanes and, as a result, relatively few propagating modes
are produced. Thus, the approach presented in this paper is ideal for this class of problems as well as relatively
low frequency phenomena which occur in aeromechanical and combustion related applications.

The scattering of vortical waves by a flat plate cascade in a uniform flow is considered below. The case cho-
sen corresponds to the problem proposed by Hanson as a CAA benchmark problem from the 3rd Computa-
tional Aeroacoustic Workshop [28] for rotor–stator interaction. In this problem, an annular cascade of 24 flat
plate stator vanes, Nv = 24, is placed in a constant area annular duct. The constant chord, zero thickness vanes
are parallel to the duct axis, and the ratio gap/chord at the tip is unity. The vortical gust is generated by an
upstream rotor with 16 blades, Nb = 16, rotating at an angular speed X, and it can be expressed in terms of
harmonics of the blade passing frequency (BPF): xp = p � xBPF, with xBPF = NbX and p = 1,2, . . .. In our
calculations only the fundamental BPF, p = 1, is considered.

The wake is modeled as a harmonic excitation imposed at the inlet, x = x0,
uh ¼ Mxa exp½iðx1x0=Mx þ mh� x1tÞ�;
ur ¼ 0;

r 	 u ¼ 0:

ð49Þ
When the wake interacts with the cascade of airfoils it scatters into disturbances with circumferential wave-
numbers that satisfy the Tyler and Sofrin condition: m = pNb � j*Nv, with j* = . . .�1,0,1,. . ., which in our
case leads to m = 16 � 24j*.

The numerical solution is compared with the 2-D Wiener-Hopf solutions of Glegg [26]. The output of inter-
est in aeroacoustic applications is the amplitude of the outgoing acoustic waves at the inlet and exit boundaries
of the computational domain. In order to compare with the 2-D solutions, we have studied the case of incident
waves with no radial variation in a narrow annulus, rh/rt = 0.98. In this case, the scattering is limited to the
azimuthal modes and the solution does not vary significantly in the radial direction. A small value is chosen
for the amplitude of the incident wave, ai,v = 0.002, to keep our full Euler solution within the linear regime.

The size of the computational domain in the x and h directions is 3b and 2p/Nv, respectively, where b = gt is
the chord length and gt = 2prt/Nv is the gap between vanes at the tip. A single passage of the cascade, between
two adjacent vanes, is discretized. Quasi-periodic conditions are applied in the h direction, as described in Sec-
tion 5.1, with r = 2p m/Nv. A uniform grid is used, and the number of nodes in each direction is
(nx,nh,nr) = (281,81,3). The vanes are placed in the middle third of the computational domain in the x-direc-
tion, x 2 [b, 2b], and on the edges of the computational domain in the h-direction, h = 0 and h ¼ 2p

Nv
. The gen-

eral nonreflecting boundary condition, BC1, is used at the inlet and exit of the computational domain. A CFL
number of approximately 1/(1 + Mx) is used.

Fig. 5 shows the amplitudes of each outgoing propagating mode at the reduced frequency of the harmonic
excitation, ~x ¼ Xrt=c0. For the time-dependent calculations, the amplitudes of the acoustic modes are time-
dependent. An FFT over 20 periods of the excitation frequency is used to transfer the time-dependent solu-
tions into the frequency domain. At the low frequencies, only one circumferential mode, m = �8, propagates.
As the reduced frequency increases beyond fourteen a second mode, m = 16, propagates. Thus at these higher
frequencies the energy of the incident wake scatters into both the m = �8 and the corotating m = 16 acoustic
modes. The numerical solutions are compared with the analytic based solutions obtained using the Wiener-



Fig. 5. Amplitudes of the outgoing acoustic modes are shown. The figure in the top row shows the amplitude of the outgoing modes at the
exit boundary as a function of reduced frequency. The figure in the bottom row shows the amplitude of the outgoing modes at the inlet
boundary as a function of reduced frequency. The circles and the plusses are the numerical solutions obtained with the nonreflecting
boundary conditions, the stars and the right-pointing triangles are the Wiener-Hopf solutions, and the left-pointing triangles are the
numerical results obtained with the local boundary conditions.

Fig. 6. Contour plot of the magnitude of uh in Fourier space on a surface r = constant. The figure shows the scattering of a vortical gust by
a cascade of flat plates in a narrow annular duct at ~x ¼ 11. The abscissa is the x-axis and the ordinate is the coordinate rmh which shows a
single passage of the cascade.
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Fig. 7. Contour plot of the magnitude of ux in Fourier space on a surface r = constant. The figure shows the scattering of a vortical gust by
a cascade of flat plates in a narrow annular duct at ~x ¼ 11. The abscissa is the x-axis and the ordinate is the coordinate rmh which shows a
single passage of the cascade.

Fig. 8. Contour plot of the magnitude of pressure in Fourier space on a surface r = constant. The figure shows the scattering of a vortical
gust by a cascade of flat plates in a narrow annular duct at ~x ¼ 11.
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Hopf technique. Comparison of the two solutions was facilitated by normalizing the pressure eigenfunctions
so that their maximum values are equal to unity and for an upwash amplitude of uðuÞh equal to 0.1. The agree-
ment with the 2D results is shown over a range of frequencies in Fig. 5.
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The circles (m = �8) and the plusses (m = 16) denote the outgoing pressure amplitudes at the excitation
frequency of the incident wake. Similarly, the stars (m = �8) and the right-pointing triangles (m = 16) denote
the Wiener-Hopf solution for the outgoing pressure amplitudes for a given reduced frequency. The agreement
between the two solutions is good over a range of frequencies. As the second mode cuts on most of the scat-
tered acoustic energy downstream and upstream of the flat plate goes to the corotating, m = 16 mode. The left-
pointing diamond shows the numerical solution using local boundary conditions for the pressure. The outgo-
ing wave amplitudes are lower than the solution obtained with the nonlocal boundary condition and the Wie-
ner-Hopf solution. This is likely due to increased reflections at the computational boundaries. The solution
using the local boundary condition is worse at the exit than it is at the inlet since the orientation of the out-
going waves is closer to normal at the inlet than it is at the exit.

To examine the complete solution, we examine contour plots of the Fourier transformed velocity and pres-
sure magnitudes for a particular case. Figs. 6–8 show contour plots of the Fourier transformed tangential
velocity, axial velocity and pressure magnitudes respectively on a surface, r = constant. In Fig. 6, the tangen-
tial velocity convects into the domain with a wavelength, k = U/f where U is the mean velocity and f is the
excitation frequency of the wake. Once the wake reaches the leading edge of the airfoil, x = p/12, the tangen-
tial velocity field adjusts to satisfy the impermeability condition on the surface of the flat plate, which lies
between p/12 6x6 p/6. Similarly, the axial velocity perturbation shown in Fig. 7 convects downstream and
is cut by the flat plate. A region of high velocity gradient develops in the neighborhood of the flat plate which
convects downstream through the outflow boundary of the computational domain. Fig. 8 shows the pressure
magnitude which is produced by the interaction of the wake with the flat plate. The largest unsteady pressure
occurs at the leading edge of the flat plate at the harmonic excitation frequency of the wake. Note that for a
single mode, the magnitude of the pressure is constant. Near the inflow and outflow boundaries the magni-
tudes of the pressure become uniform and a single acoustic mode with azimuthal wavenumber, m = �8, prop-
agates out of the computational inflow and outflow boundaries.
7. Conclusions

The nonlocal conditions derived for the wave equation in [6] have been generalized and implemented in a
second order finite volume solution of the nonlinear Euler equations by linearizing near the inflow/outflow
boundaries. While the exact nonreflecting boundary conditions are, in general, nonlocal in both space and
time, one can often take advantage of the physics of the individual problem to minimize the computational
time and memory required. For example, in many problems where the frequencies are low, such as flutter
and combustion generated noise, or in rotor–stator interactions where the blade and vane counts are very dif-
ferent only a few propagating modes are needed to represent the pressure field away from the source region of
the flow. To exploit this, the nonreflecting boundary conditions are expressed in Fourier space and lead to a
local condition for each mode. When the number of modes needed to represent the acoustic pressure field is
small compared to the computational grid, this approach should result in significant computational savings.
This coupled with fast methods for evaluating the convolution integral [10,11] should make exact nonreflecting
boundary conditions more widespread in real applications such as internal aerodynamics.
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